If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 32xz + 3(xz2 + xz + -2x) + -6[12 + -6x2z + -1(xz + -1z)] = 0 Reorder the terms: 32xz + 3(-2x + xz + xz2) + -6[12 + -6x2z + -1(xz + -1z)] = 0 32xz + (-2x * 3 + xz * 3 + xz2 * 3) + -6[12 + -6x2z + -1(xz + -1z)] = 0 32xz + (-6x + 3xz + 3xz2) + -6[12 + -6x2z + -1(xz + -1z)] = 0 32xz + -6x + 3xz + 3xz2 + -6[12 + -6x2z + (xz * -1 + -1z * -1)] = 0 32xz + -6x + 3xz + 3xz2 + -6[12 + -6x2z + (-1xz + 1z)] = 0 Reorder the terms: 32xz + -6x + 3xz + 3xz2 + -6[12 + -1xz + -6x2z + 1z] = 0 32xz + -6x + 3xz + 3xz2 + [12 * -6 + -1xz * -6 + -6x2z * -6 + 1z * -6] = 0 32xz + -6x + 3xz + 3xz2 + [-72 + 6xz + 36x2z + -6z] = 0 Reorder the terms: -72 + -6x + 32xz + 3xz + 6xz + 3xz2 + 36x2z + -6z = 0 Combine like terms: 32xz + 3xz = 35xz -72 + -6x + 35xz + 6xz + 3xz2 + 36x2z + -6z = 0 Combine like terms: 35xz + 6xz = 41xz -72 + -6x + 41xz + 3xz2 + 36x2z + -6z = 0 Solving -72 + -6x + 41xz + 3xz2 + 36x2z + -6z = 0 Solving for variable 'x'. The solution to this equation could not be determined.
| (x+1)=x^2-9x+21 | | x^3+2x^2+x-18=0 | | n^2+9n+108=0 | | h()=-2 | | 6(x+3)=12-12(x) | | 1+x=3-x | | X^2+6x-7=x^2+2x+1 | | 2m+7-7m=10+2m+18 | | 7+3(6-x)=43-3(x+6) | | -(s+13)+2s-3=-3 | | 2m+7m-7m=10+2m+18 | | 15(3+1)=75 | | 4m/2m^-3 | | (27x5+9x4-18x3)/9x2 | | 15z-14(z-6)+10=105 | | 6x^2+5x-8x=-4 | | 3x+2=44 | | 5.3x-8.1=7.95-5.4x | | 5x+7x=3+6x-36 | | 5z-3z-4=-7 | | (x-2)(x^2+4x+9)=0 | | 9w=8w-12 | | 4x+14=x+60 | | j(7)=2(7)+9 | | 2v+3/7=24-9v+3/4 | | x^2-7x-3/4=0 | | 7y=6y+2 | | a/0+4/15=9/15 | | X^2-8x=28-3x | | x/3+31/3=4r-3/4 | | x^(4/3)=1296 | | X^2-8v-16=12-3x |